How many bits of entropy per character in various encoding schemes.

By Encoding Scheme

The number of symbols (characters) in each encoding scheme, the multiplier (to get how many characters are needed to store so many bytes), and maximum number of bits per character.

Encoding # Chars Multiplier Bits per Char
Byte 256 1 8
ASCII 128 8/7 7
Base64 64 4/3 6
AlphaNum (Base62) 62 - 5.954 (approx)
LowerNum 36 - 5.169 (approx)
Base32 32 8/5 5
Hex 16 2 4
Numeric 10 - 3.321 (approx)
Octal 8 8/3 3
Binary 2 8 1

See also https://en.wikipedia.org/wiki/Password_strength#Random_passwords

By Bits vs Minimum Number of Characters

How many characters are needed in each encoding to store at least so many bits.

Bits Byte (256) ASCII (128) Base64 62 32 Hex (16) Dec (10) Octal (8) Binary (2)
8 bits 1 B 2 2 2 2 2 3 3 8
19 bits 3 B 3 4 4 4 5 6 7 19
24 bits 3 B 4 4 5 5 6 8 8 24
29 bits 4 B 5 5 5 6 8 9 10 29
32 bits 4 B 5 6 6 7 8 10 11 32
48 bits 6 B 7 8 9 10 12 15 16 48
60 bits 8 B 9 10 11 12 15 19 20 60
64 bits 8 B 10 11 11 13 16 20 22 64
72 bits 9 B 11 12 13 15 18 22 24 72
96 bits 12 B 14 16 17 20 24 29 32 96
120 bits 15 B 18 20 21 24 30 37 40 120
128 bits 16 B 19 22 22 26 32 39 43 128
144 bits 18 B 21 24 25 29 36 44 48 144
192 bits 24 B 28 32 33 39 48 58 64 192
256 bits 32 B 37 43 43 52 64 78 86 256
512 bits 64 B 74 86 86 103 128 155 171 512
1024 bits 128 B 147 171 172 205 256 309 342 1024
4096 bits 512 B 586 683 688 820 1024 1234 1366 4096
  • 19 bits - common for OTP
  • 29 bits - minimum recommendation for online systems
  • 96 bits - minimum recommendation for offline systems
  • 128 bits - common for API keys
  • 256 bits - common for overkill
  • 4096 bits - common for prime numbers (sparse keyspace)

Reference Tables (Base64, Decimal, Hex)

A quick lookup for the maximum entropy in an encoded string of a given minimum length:

Base64

Base64 is also a good approximation of the ASCII characters people actually use in their passwords - they may include a !, $, or space, but not with any randomness - so the extra possible “special character” entropy is maybe on par with base64’s two extra characters.

Base64 Chars Bits Bytes
2 8 bits 1
4 24 bits 3
6 32 bits 4
8 48 bits 6
10 60 bits > 7
11 64 bits 8
12 72 bits 9
16 96 bits 12
20 120 bits 15
22 128 bits 16
24 144 bits 18
32 192 bits 24
var n = 16;
crypto.randomBytes(n).toString("base64").replace(/=/g, "").length;

Decimal

Commonly used for PINs and OTP.

Decimal Chars Bits Bytes
3 8 bits 1
4 > 13 bits > 1
5 > 16 bits > 2
6 > 19 bits
(common for OTP)
> 2
8 > 26 bits > 3
9 > 29 bits
(minimum recommendation
for online systems)
> 3
10 > 33 bits > 4
12 > 39 bits > 4
var n = 4;
parseInt(crypto.randomBytes(n).toString("hex"), 16).toString(10).length;

Hex

Hex is easy to compute in your head (either 2x or n/4), but just for reference:

Hex Chars Bits Bytes
2 8 bits 1
6 24 bits 3
8 32 bits
(29+ recommended
for online systems)
4
10 40 bits 5
12 48 bits 6
16 64 bits 8
20 80 bits 10
24 96 bits
(min recommendation
for offline systems)
12
32 128 bits 16
var n = 4;
crypto.randomBytes(n).toString("hex").length;

See also https://en.wikipedia.org/wiki/Password_strength#Required_bits_of_entropy.

How to Calculate Bits of Entropy per Character

You can arrive at bits of entropy per character in a string with with Math.log(n) / Math.log(2).

For example:

function getBits(n) {
    return Math.log(n) / Math.log(2);
}

getBits(256); // 8     (Byte)
getBits(62);  // 5.954 (AlphaNumeric)
getBits(36);  // 5.169 (Case-Insensitive AlphaNumeric)
getBits(32);  // 5     (Crockford Base32)
getBits(10);  // 3.321 (Numeric)
getBits(2);   // 1     (Binary)

Note: In the example here I truncate (floor) the value rather than rounding because my moral belief is that the nature of entropy is such that it must only be rounded down - an entropy of 1.9999 bits is simply not 2. 😉

Math.log(n)/Math.log(b) is the inverse of Math.pow(b, e), but whereas the Math.pow(b, e) allows you to specify the exponent, Math.log(n) does not - so you have to resort to math - rules and all that.

Any log at a given base divided by the log of the same base (10 in this case, I think) yields the log of the numerator in the base of the denominator.

Calculating Entropy in Unicode Strings

Unicode strings have different entropies based on their encoding, but each extra tuple of bytes has fewer bits per tuple (the leading bits are used as byte markers).

UTF-8, for example:

Tuple Size Bit Sizes Total Bits
1 7 7
2 7+6 13
3 7+6+5 18
4 7+6+5+4 22
5 7+6+5+4+3 25
6 7+6+5+4+3+2 27
7 7+6+5+4+3+2+1 28

I don’t know why you’d want to use that - maybe you allow emojis in passwords? - but anyway, there it is.

How to generate such Tables

"use strict";

console.info("| Bits | Bytes | ASCII | Base64 | 62  | 32  | Hex | Dec | Octal | Binary |");
console.info("| ---: | ----: | ----: | -----: | --: | --: | --: | --: | ----: | -----: |");
[
    8, 19, 24, 29, 32, 48, 60, 64, 72, 96, 120, 128, 144, 192, 256, 512, 1024,
    4096,
].forEach(function (bits) {
    var B = getNumChars(bits, 256);
    var a = getNumChars(bits, 128);
    var b64 = getNumChars(bits, 64);
    var b62 = getNumChars(bits, 62);
    var b32 = getNumChars(bits, 32);
    var h = getNumChars(bits, 16);
    var d = getNumChars(bits, 10);
    var o = getNumChars(bits, 8);
    var b = getNumChars(bits, 2);
    console.info(
        `|  %s bits  |  %s B | %s |  %s |  %s  |  %s  |  %s  |  %s  |  %s  |  %s  |`,
        b,
        B,
        a,
        b64,
        b62,
        b32,
        h,
        d,
        o,
        b
    );
});

function getNumChars(bits, base) {
    return Math.ceil(bits / getBitsPerChar(base));
}

function getBitsPerChar(n) {
    // number of symbols in set
    return Math.log(n) / Math.log(2);
}